Essential surfaces derived from knot and link diagrams

Makoto Ozawa

November 21, 2008

1 Definitions of essential surfaces

M: orientable 3-manifold $F \subset M$: orientable surface

 $T \subset M$: 1-manifold intersecting F transversely

 $\ell \subset F - T$: loop $\alpha \subset F - T$: arc

- ℓ is inessential if there exists a disk $D \subset F T$ such that $\partial D = \ell$. ℓ is essential if it is not inessential.
- ℓ is meridionally inessential if there exists a disk $D \subset F$ such that $\partial D = \ell$ and $|D \cap T| \leq 1$. ℓ is meridionally essential if it is not meridionally inessential.
- α is inessential if there exists a disk $D \subset F T$ such that $D \cap \alpha = \partial D \cap \alpha = \alpha$ and $D \cap \partial F = \partial D \operatorname{int} \alpha$. α is essential if it is not inessential.
- F is compressible in M-T if
 - If F is a 2-sphere, then there exists a 3-ball $B \subset M T$ such that $\partial B = F$.
 - If F is a disk, then there exits a 3-ball $B \subset M-T$ such that $B \cap F = \partial B \cap F = F$ and $B \cap \partial M = \partial B \text{int}F$.
 - Otherwise, there exits a disk $D \subset M T$ such that $D \cap F = \partial D$ is essential in F T.

F is incompressible in M-T if it is not compressible.

- F is meridionally compressible in (M,T) if there exists a disk $D \subset M$ such that $D \cap F = \partial D$ is meridionally essential in F and $|D \cap T| = 1$. F is meridionally incompressible in (M,T) if it is not meridionally compressible.
- F is boundary-compressible (∂ -compressible) in M if there exists a disk $D \subset M$ such that $D \cap F = \partial D \cap F = \alpha$ is an essential arc in F and $D \cap \partial M = \partial D \operatorname{int} \alpha$. F is boundary-incompressible (∂ -compressible) in M if it is not boundary-compressible (∂ -compressible).
- F is boundary-parallel (∂ -parallel) in M if there exists an embedding $F \times I \subset M$ such that $F \times \{0\} = F$ and $(F \times I) \cap \partial M = \partial (F \times I) \text{int}F$.

- T is hyperbolic in M if there exists no essential surface $S \subset M \text{intN}(T)$ with $\chi(S) \geq 0$.
- F (resp. T) is free in M if each component of M intN(F) (resp. M intN(T)) is a handlebody.

Let K be a knot in the 3-sphere S^3 and E(K) denotes the exterior of K. We say that an orientable surface F embedded in E(K) is essential if it is incompressible, boundary-incompressible and not boundary-parallel. Also we say that a non-orientable surface F embedded in E(K) is essential if the associated ∂I -bundle $F \tilde{\times} \partial I$ over F is essential.

2 σ -adequate and σ -homogeneous diagrams

Let K be a knot or link in the 3-sphere S^3 and D a connected diagram of K on the 2-sphere S^2 which separates S^3 into two 3-balls, say B_+, B_- . Let $\mathcal{C} = \{c_1, \ldots, c_n\}$ be the set of crossings of D. A map $\sigma: \mathcal{C} \to \{+, -\}$ is called a *state* for D. For each crossing $c_i \in \mathcal{C}$, we take a +-smoothing or --smoothing according to $\sigma(c_i) = +$ or -. See Figure 1. Then, we have a collection of loops l_1, \ldots, l_m on S^2 and call those *state loops*. Let $\mathcal{L}_{\sigma} = \{l_1, \ldots, l_m\}$ be the set of state loops.

Figure 1: Two smoothings of a crossing

Each state loop l_i bounds a unique disk d_i in B_- , and we may assume that these disks are mutually disjoint. For each crossing c_j and state loops l_i, l_k whose subarcs replaced c_j by $\sigma(c_j)$ -smoothing, we attach a half twisted band b_j to d_i, d_k so that it recovers c_j . See Figure 2 for $\sigma(c_j) = +$. In such a way, we obtain a spanning surface which consists of disks d_1, \ldots, d_m and half twisted bands b_1, \ldots, b_n and call this a σ -state surface

We construct a graph G_{σ} with signs on edges from F_{σ} by regarding a disk d_i as a vertex v_i and a band b_j as an edge e_j which has the same sign $\sigma(c_j)$. We call the graph G_{σ} a σ -state graph. In general, a graph is called a block if it is connected and has no cut vertex. It is known that any graph has a unique decomposition into maximal blocks. We say that a diagram D is σ -adequate if G_{σ} has no loop, and that D is σ -homogeneous if in each block of G_{σ} , all edges have a same sign.

3 algebraically alternating diagrams

Let K be a knot or link in the 3-sphere S^3 and \tilde{K} be a diagram of K on the 2-sphere S^2 . According to the Conway notation, we regard each crossing of \tilde{K} as a rational tangle of slope ± 1 , and sum two tangles as far as there is a bigon. After such an operation, we substitute each algebraic tangle (B,T) for a rational tangle of slope 1, -1, 0 or ∞ if the

Figure 2: Recovering a crossing by a half twisted band

slope of (B,T) is positive, negative, 0 or ∞ respectively (fixing four points of ∂T). The resultant knot or link diagram is said to be *basic* and denoted by \tilde{K}_0 . Then we say that \tilde{K} is algebraically alternating if \tilde{K}_0 is alternating, and K is algebraically alternating if K has an algebraically alternating diagram.

 \tilde{K} : algebraically alternating link diagram

 $ilde{K_0}$: the basic diagram of $ilde{K}$

4 The Hasse diagram of various knot classes

5 Essential surfaces derived from knot and link diagrams

knot diagram から、本質的曲面の構成、及び曲面の位置の制限ができる。

1. 曲面の構成

- checkerboard surface
- Seifert surface

Figure 3: The Hasse diagram for the set of knot diagrams partially ordered by inclusion

Figure 4: The Hasse diagram for the set of various knot classes partially ordered by inclusion 4

• state surface

2. 曲面の位置の制限

- alternating knot
- positive knot
- algebraically alternating knot

5.1 曲面の構成

Theorem 5.1 ([1]). alternating diagram \Rightarrow checkerboard surface は本質的

Theorem 5.2 ([3], [6], [4]). alternating diagram \Rightarrow canonical Seifert surface は本質的 (最小種数)

Theorem 5.3 ([2]). homogeneous diagram \Rightarrow canonical Seifert surface は本質的(最小種数)

Theorem 5.4 ([8]). σ -adequate and σ -homogeneous diagram $\Rightarrow \sigma$ -state surface は本質的

5.2 曲面の位置の制限

closed incompressible surface $F \subset S^3 - K$ の waist w(F) を次のように定義する。

$$w(F) = \min\{\#(D \cap K)|D \text{ is a compressing disk for } F \text{ in } S^3\}$$

Theorem 5.5 ([5]). K: alternating knot $F \subset S^3 - K$: closed incompressible surface $\Rightarrow w(F) = 1$

closed incompressible surface $F\subset S^3-K$ に対して、包含写像 $i:F\to S^3-K$ から誘導される準同型写像 $i_*:H_1(F)\to H_1(S^3-K)$ の像 $Im(i_*)$ は、meridian で生成される巡回群 $H_1(S^3-K)$ の部分群であるから、ある整数 m が存在して、 $Im(i_*)=m\mathbb{Z}$ とおける。このとき、F の order を o(F)=m で定義する。

Theorem 5.6 ([7]). K: positive knot $F \subset S^3 - K$: closed incompressible surface $\Rightarrow o(F) \neq 0$

Theorem 5.7 ([9]). K: algebraically alternating knot $F \subset S^3 - K$: closed incompressible surface $\Rightarrow w(F) = 1$

References

- [1] R. J. Aumann, Asphericity of alternating knots, Ann. of Math. 64 (1956) 374–392.
- [2] P. R. Cromwell, *Homogeneous links*, J. London Math. Soc. (2) **39** (1989) 535–552.
- [3] R. Crowell, Genus of alternating link types, Ann. of Math. 69 (1959) 258-275.

- [4] D. Gabai, Foliations and genera of links, Topology 23 (1984) 381–394.
- [5] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology, Vol. 23, No.1 (1984), 37-44.
- [6] K. Murasugi, On the genus of the alternating knot I, II, J. Math. Soc. Japan 10 (1958) 94-105, 235-248.
- [7] M. Ozawa, Closed incompressible surfaces in the complements of positive knots, Comment. Math. Helv. 77 (2002) 235–243.
- [8] M. Ozawa, Essential state surfaces for knots and links, preprint available in http://arxiv.org/abs/math.GT/0609166
- [9] M. Ozawa, Rational structure on algebraic tangles and closed incompressible surfaces in the complements of algebraically alternating knots and links, preprint available in http://arxiv.org/abs/0803.1302
- [10] M. Ozawa, Essential surfaces in knot exteriors, preprint available in http://www.komazawa-u.ac.jp/~w3c/surface.pdf