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1 Definitions of essential surfaces

M : orientable 3-manifold

F C M : orientable surface

T C M : 1-manifold intersecting F' transversely
¢ C F—T: loop

o CF—-T: arc

e ( is inessential if there exists a disk D C F — T such that 0D = ¢. ¢ is essential if
it is not inessential.

e [ is meridionally inessential if there exists a disk D C F such that 0D = ¢ and
|IDNT| < 1. ¢is meridionally essential if it is not meridionally inessential.

e « is inessential if there exists a disk D C F — T such that DNa = 0D Na = o and
DNOF = 0D — inta. «v is essential if it is not inessential.

e ['is compressiblein M — T if

— If F'is a 2-sphere, then there exists a 3-ball B C M — T such that 0B = F.

— If Fis a disk, then there exits a 3-ball B C M —T such that BNF = 0BNF = F
and BNOM = 0B — intF.

— Otherwise, there exits a disk D € M — T such that D N F = 0D is essential
in F—T.

F'is incompressible in M — T if it is not compressible.

e F'is meridionally compressible in (M, T) if there exists a disk D C M such that
D N F = 0D is meridionally essential in F and |[DNT| = 1. F is meridionally
incompressible in (M, T) if it is not meridionally compressible.

e F'is boundary-compressible (0-compressible) in M if there exists a disk D C M such
that DN F = 0D N F = « is an essential arc in F and DN OM = 0D — inta. F'is
boundary-incompressible (0-incompressible) in M if it is not boundary-compressible
(O-compressible).

e F'is boundary-parallel (0-parallel) in M if there exists an embedding F' x I C M
such that F x {0} = F and (F x I)NdM = O(F x I) — intF.
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e T is hyperbolic in M if there exists no essential surface S C M — intN(T) with
X(S5) = 0.

e F (resp. T) is free in M if each component of M — intN(F) (resp. M — intN(T)) is
a handlebody.

Let K be a knot in the 3-sphere S and F(K) denotes the exterior of K. We say that
an orientable surface F' embedded in F(K) is essential if it is incompressible, boundary-
incompressible and not boundary-parallel. Also we say that a non-orientable surface F'
embedded in E(K) is essential if the associated dI-bundle F'xdI over F is essential.

2 oc-adequate and o-homogeneous diagrams

Let K be a knot or link in the 3-sphere S® and D a connected diagram of K on the
2-sphere S? which separates S? into two 3-balls, say By, B_. Let C = {cy,...,c,} be the
set of crossings of D. A map o : C — {+, —} is called a state for D. For each crossing
¢; € C, we take a +-smoothing or —-smoothing according to o(c;) = + or —. See Figure
1. Then, we have a collection of loops li,...,l, on S? and call those state loops. Let
Ly =A{li,...,ln} be the set of state loops.

A ) =

crossing +-smoothing —-smoothing

Figure 1: Two smoothings of a crossing

Each state loop [; bounds a unique disk d; in B_, and we may assume that these disks
are mutually disjoint. For each crossing c; and state loops /;, [, whose subarcs replaced c;
by o(c;)-smoothing, we attach a half twisted band b; to d;, d; so that it recovers ¢;. See
Figure 2 for o(c;) = +. In such a way, we obtain a spanning surface which consists of
disks dy,...,d,, and half twisted bands b, ..., b, and call this a o-state surface

We construct a graph G, with signs on edges from F, by regarding a disk d; as a
vertex v; and a band b; as an edge e; which has the same sign o(c;). We call the graph
G, a o-state graph. In general, a graph is called a block if it is connected and has no cut
vertex. It is known that any graph has a unique decomposition into maximal blocks. We
say that a diagram D is o-adequate if G, has no loop, and that D is o-homogeneous if in
each block of G, all edges have a same sign.

3 algebraically alternating diagrams

Let K be a knot or link in the 3-sphere S* and K be a diagram of K on the 2-sphere
S2. According to the Conway notation, we regard each crossing of K as a rational tangle
of slope +1, and sum two tangles as far as there is a bigon. After such an operation, we
substitute each algebraic tangle (B,T') for a rational tangle of slope 1, —1, 0 or oo if the



Figure 2: Recovering a crossing by a half twisted band

slope of (B, T) is positive, negative, 0 or oo respectively (fixing four points of 9T"). The
resultant knot or link diagram is said to be basic and denoted by K,. Then we say that
K is algebraically alternating if K, is alternating, and K is algebraically alternating if K
has an algebraically alternating diagram.

e

: algebraically alternating link diagram . the basic diagram of K

4 The Hasse diagram of various knot classes

5 Essential surfaces derived from knot and link dia-
grams

knot diagram O U OO0 000000 DO0OO0OO0OOO0OOO0OOO0OOO

1. ggobo

e checkerboard surface

e Seifert surface
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Figure 3: The Hasse diagram for the set of knot diagrams partially ordered by inclusion
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Figure 4: The Hasse diagram for the set of various knot classes partially ordered by
inclusion 4



e state surface
2. 000gogoooo

e alternating knot
e positive knot

e algebraically alternating knot

5.1 0OOOOO
Theorem 5.1 ([1]). alternating diagram = checkerboard surface d O 0 0O

Theorem 5.2 ([3], [6], [4]). alternating diagram = canonical Seifert surface 0 0 O O
goooon

Theorem 5.3 ([2]). homogeneous diagram = canonical Seifert surface 0000000
gad

Theorem 5.4 ([8]). o-adequate and o-homogeneous diagram = o-state surface 0 0 0 O

5.2 OOOOOOO
closed incompressible surface FF C S* — KO waist w(F) DO OO0O000O0O0O

w(F) = min{#(D N K)|D is a compressing disk for F in S*}

Theorem 5.5 ([5]). K : alternating knot
F C 83 — K : closed incompressible surface
= w(F)=1

closed incompressible surface F C S* - KOOOOOOOOO:: F = S*—KOOO
0000000004, : Hy(F) — Hi(S* — K)0 O Im(i,) 0 O meridian 000000 DO
0o H1(53—K)DDDDDDDDDDDDDD mOO0000O0Im(i,) =mzZ00000O
O0000OFO orderd o(F)=mOd00000

Theorem 5.6 ([7]). K : positive knot
F C S — K : closed incompressible surface

= o(F) #0

Theorem 5.7 ([9]). K : algebraically alternating knot

F C S — K : closed incompressible surface

= w(F)=1
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