Positive recurrence of multidimensional reflecting random walk with a background process

Toshihisa Ozawa

Komazawa University, Japan

June 26, 2012 INFORMS Inter. Beijing

• *d*-Dimensional RRW with a Background Process

- Induced Chain
- 8 Results
- An Queueing Example (3D Case)

d-dimensional RRW-WBP: Definition

Notations

•
$$N = \{1, 2, ..., d\}$$

- $S^A = \{1, 2, ..., s^A\}$, $A \subset N$: finite sets, s^A : a positive integer
- $\varphi(\boldsymbol{x}) = \{l \in N : x_l \geq 1\}$: the index set of nonzero elements in $\boldsymbol{x} \in \mathbb{Z}_+^d$

d-dimensional RRW-WBP: Definition

Notations

•
$$N = \{1, 2, ..., d\}$$

- $S^A = \{1,2,...,s^A\} \text{, } A \subset N\text{: finite sets, } s^A\text{: a positive integer}$
- $\varphi({m x})=\{l\in N: x_l\geq 1\}$: the index set of nonzero elements in ${m x}\in \mathbb{Z}^d_+$

d-dimensional skip-free reflecting random walk with a background process (dD-RRW-WBP)

 $\{\boldsymbol{Y}_n\} = \{(\boldsymbol{X}_n, J_n)\}$ is a *d*-dimensional skip-free RRW-WBP if:

- $\{\boldsymbol{Y}_n\}$ is a Markov chain on state space $\mathcal{S} = \bigcup_{\boldsymbol{x} \in \mathbb{Z}_+^d} \left(\{\boldsymbol{x}\} \times S^{\varphi(\boldsymbol{x})} \right).$
- $\{X_n\} = \{(X_{1,n}, X_{2,n}, \cdots, X_{d,n})\}$ on \mathbb{Z}^d_+ is skip-free in all directions.
- Transition probabilities have the following space-homogeneity property: For $x \in \mathbb{Z}_+^d$ and $z \in \{-1,0,1\}^d$ such that $x + z \in \mathbb{Z}_+^d$,

$$P(\boldsymbol{Y}_{n+1} = (\boldsymbol{x} + \boldsymbol{z}, j) | \boldsymbol{Y}_n = (\boldsymbol{x}, i)) = p_{\boldsymbol{z}}^{\boldsymbol{\varphi}(\boldsymbol{x}) \, \boldsymbol{\varphi}(\boldsymbol{x} + \boldsymbol{z})}(i, j).$$

Transition probabilities

• \mathcal{B}^A , $A \subset N$: Boundary faces

$$\begin{aligned} \mathcal{B}^A &= \{ (\boldsymbol{x}, i) \in \mathcal{S} : \varphi(\boldsymbol{x}) = A \} \\ &= \{ (\boldsymbol{x}, i) \in \mathcal{S} : \text{if } l \in A \text{ then } x_l \geq 1; \text{ otherwise } x_l = 0 \} \end{aligned}$$

Transition probabilities

• \mathcal{B}^A , $A \subset N$: Boundary faces

$$\begin{split} \mathcal{B}^A &= \{ (\boldsymbol{x}, i) \in \mathcal{S} : \varphi(\boldsymbol{x}) = A \} \\ &= \{ (\boldsymbol{x}, i) \in \mathcal{S} : \text{if } l \in A \text{ then } x_l \geq 1 \text{; otherwise } x_l = 0 \} \end{split}$$

Transition probabilities

For
$$oldsymbol{x}\in\mathbb{Z}^d_+$$
 and $oldsymbol{z}\in\{-1,0,1\}^d$ such that $oldsymbol{x}+oldsymbol{z}\in\mathbb{Z}^d_+$,

$$P(\boldsymbol{Y}_{n+1} = (\boldsymbol{x} + \boldsymbol{z}, j) | \boldsymbol{Y}_n = (\boldsymbol{x}, i)) = p_{\boldsymbol{z}}^{\boldsymbol{\varphi}(\boldsymbol{x}) \cdot \boldsymbol{\varphi}(\boldsymbol{x} + \boldsymbol{z})}(i, j).$$

• Transition probabilities are space-homogeneous in each boundary face \mathcal{B}^A .

Two dimensional case

Case of d = 2

$\{\boldsymbol{Y}_n\}=\{(\boldsymbol{X}_n,J_n)\}=\{((X_{1,n},X_{2,n}),J_n\}:$ 2D-RRW-WBP on state space $\mathcal S$

$$\begin{array}{c} x_{2} \\ x_{2} \\ x_{2} \\ x_{3} \\ x_{2} \\ x_{4} \\ x_{1} \\ x_{1}$$

• $\{\boldsymbol{Y}_n\}$ is space-homogenous in each boundary face.

Discrete-time version of *d*-node generalized Jackson network with Markovian arrivals and phase-type services

- $\boldsymbol{Y}_n = ((X_{1,n}, X_{2,n}, \cdots, X_{d,n}), J_n)$: the state of the network at time n
- $X_{l,n}$: the number of customers in node l
- J_n: the phase of the process combining the Markovan arrival processes and phase-type service processes

Assumption and Conditional mean increment vector

Assumption

We assume the *d*-dimensional RRW-WBP $\{\mathbf{Y}_n\}$ is irreducible.

Assumption

We assume the *d*-dimensional RRW-WBP $\{\mathbf{Y}_n\}$ is irreducible.

Conditional mean increment vector

For $oldsymbol{y}\in\mathcal{S}$, let $oldsymbol{lpha}(oldsymbol{y})$ be the conditional mean increment vector defined as

$$\boldsymbol{\alpha}(\boldsymbol{y}) = \begin{pmatrix} \alpha_1(\boldsymbol{y}) & \alpha_2(\boldsymbol{y}) & \cdots & \alpha_d(\boldsymbol{y}) \end{pmatrix} = E(\boldsymbol{\xi}_{n+1} | \boldsymbol{Y}_n = \boldsymbol{y}),$$

where $\xi_{n+1} = X_{n+1} - X_n$.

• We obtain sufficient conditions on which the *d*-dimensional RRW-WBP is positive recurrent or transient.

- d-Dimensional RRW with a Background Process
- Induced Chain
- 8 Results
- An Queueing Example (3D Case)

Induced chain: Definition

Notation:

• For
$$\boldsymbol{x} \in \mathbb{Z}^d_+$$
 and $A \subset N$, $\boldsymbol{x}^A = (x_l, l \in A)$.

• Example: d = 5, $N = \{1, 2, 3, 4, 5\}$, $A = \{1, 3\}$

$$\Rightarrow \pmb{x}^A = (x_1, x_3), \ \pmb{y}^{N \setminus A} = (y_2, y_4, y_5), \ (\pmb{x}^A, \pmb{y}^{N \setminus A}) = (x_1, y_2, x_3, y_4, y_5)$$

Induced chain: Definition

Notation:

• For
$$\boldsymbol{x} \in \mathbb{Z}_+^d$$
 and $A \subset N$, $\boldsymbol{x}^A = (x_l, l \in A)$.

• Example: d = 5, $N = \{1, 2, 3, 4, 5\}$, $A = \{1, 3\}$

$$\Rightarrow \bm{x}^A = (x_1, x_3), \ \bm{y}^{N \setminus A} = (y_2, y_4, y_5), \ (\bm{x}^A, \bm{y}^{N \setminus A}) = (x_1, y_2, x_3, y_4, y_5)$$

Induced chain

For $A \subset N$, $A \neq \emptyset$, induced chain $\mathcal{L}^A = \{(\hat{\boldsymbol{X}}_n^{N \setminus A}, \hat{J}_n)\}$ is a (d - |A|)-dimensional RRW-WBP on state space \mathcal{S}^A .

•
$$S^A = \bigcup_{\boldsymbol{x}^{N\setminus A}\in\mathbb{Z}_+^{d-|A|}} \left(\{ \boldsymbol{x}^{N\setminus A} \} \times S^{\varphi(\boldsymbol{x}^{N\setminus A}, \boldsymbol{1}^A)} \right), \ \boldsymbol{1} = (1 \ 1 \ \cdots \ 1) \in \mathbb{Z}_+^d$$

• Transition probabilities; For $\pmb{x}^{N\setminus A}\in\mathbb{Z}_+^{d-|A|}$ and $\pmb{z}^{N\setminus A}\in\{-1,0,1\}^{d-|A|}$,

$$P\Big((\hat{\boldsymbol{X}}_{n+1}^{N\setminus A}, \hat{J}_{n+1}) = (\boldsymbol{x}^{N\setminus A} + \boldsymbol{z}^{N\setminus A}, j) \mid (\hat{\boldsymbol{X}}_{n}^{N\setminus A}, \hat{J}_{n}) = (\boldsymbol{x}^{N\setminus A}, i)\Big)$$
$$= \sum_{\boldsymbol{z}^{A} \in \{-1, 0, 1\}^{|A|}} p_{(\boldsymbol{z}^{N\setminus A}, \boldsymbol{z}^{A})}^{\varphi(\boldsymbol{x}^{N\setminus A}, 1^{A})} \varphi(\boldsymbol{x}^{N\setminus A} + \boldsymbol{z}^{N\setminus A}, 1^{A})}(i, j)$$

Assumption and Mean increment vector

Assumption

For all $A \subset N$, $A \neq \emptyset$, induced chain \mathcal{L}^A is irreducible.

Assumption and Mean increment vector

Assumption

For all $A \subset N$, $A \neq \emptyset$, induced chain \mathcal{L}^A is irreducible.

For $A \subset N$, $A \neq \emptyset$, if \mathcal{L}^A is positive recurrent, then we define follows:

Mean increment vector with respect to \mathcal{L}^A

• $\pi^A = (\pi^A(\boldsymbol{x}^{N \setminus A}, i), (\boldsymbol{x}^{N \setminus A}, i) \in S^A)$: the stationary distribution of \mathcal{L}^A • $\boldsymbol{a}(A) = (a_1(A) \ a_2(A) \ \cdots \ a_d(A))$: Mean increment vector

$$a_l(A) = \sum_{(\boldsymbol{x}^{N \setminus A}, i) \in S^A} \alpha_l((\boldsymbol{x}^{N \setminus A}, \boldsymbol{1}^A), i) \, \pi^A(\boldsymbol{x}^{N \setminus A}, i), \ l \in N,$$

 $(\alpha_l(\boldsymbol{y}) = E(X_{l,n+1} - X_{l,n} | \boldsymbol{Y}_n = \boldsymbol{y}), \boldsymbol{y} \in \mathcal{S}$: the conditional mean increments.)

Assumption and Mean increment vector

Assumption

For all $A \subset N$, $A \neq \emptyset$, induced chain \mathcal{L}^A is irreducible.

For $A \subset N$, $A \neq \emptyset$, if \mathcal{L}^A is positive recurrent, then we define follows:

Mean increment vector with respect to \mathcal{L}^A

• $\pi^A = (\pi^A(\boldsymbol{x}^{N \setminus A}, i), (\boldsymbol{x}^{N \setminus A}, i) \in S^A)$: the stationary distribution of \mathcal{L}^A • $\boldsymbol{a}(A) = (a_1(A) \ a_2(A) \ \cdots \ a_d(A))$: Mean increment vector

$$a_l(A) = \sum_{(\boldsymbol{x}^{N \setminus A}, i) \in \mathcal{S}^A} \alpha_l((\boldsymbol{x}^{N \setminus A}, \boldsymbol{1}^A), i) \, \pi^A(\boldsymbol{x}^{N \setminus A}, i), \ l \in N,$$

 $(\alpha_l(\boldsymbol{y}) = E(X_{l,n+1} - X_{l,n} | \boldsymbol{Y}_n = \boldsymbol{y}), \boldsymbol{y} \in \mathcal{S}$: the conditional mean increments.)

• Note that $a_l(A) = 0$ for all $l \in N \setminus A$. Thus, a(A) is perpendicular to induced chain \mathcal{L}^A , in some sense.

Two dimensional case

$$\{Y_n\} = \{((X_{1,n}, X_{2,n}), J_n)\}$$
: 2D-RRW-WBP

Induced chains

- \mathcal{L}^N : finite Markov chain; $\boldsymbol{a}(N) = (a_1(N), a_2(N))$ always exists.
- $\mathcal{L}^{\{1\}}$: quasi-birth-and-death (QBD) process; positive recurrent if $a_2(N) < 0$.
- $\mathcal{L}^{\{2\}}$: QBD process; positive recurrent if $a_1(N) < 0$.

- Interpretending of the second of the seco
- Induced Chain
- Results
- An Queueing Example (3D Case)

Notations

• \mathcal{N}_p : the index set of all positive-recurrent induced chains, given by

 $\mathcal{N}_p = \{ A \subset N : A \neq \emptyset, \ \mathcal{L}^A \text{ is positive recurrent} \}.$

• \mathcal{U} : the set of $d \times d$ matrices defined by

 $\mathcal{U} = \Big\{ U = (\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_d) : \ U \text{ is positive definite and} \\ \boldsymbol{a}(A)^\top \boldsymbol{u}_j < 0 \text{ for all } A \in \mathcal{N}_p \text{ and all } j \in A \Big\}.$

Notations

• \mathcal{N}_p : the index set of all positive-recurrent induced chains, given by

 $\mathcal{N}_p = \{ A \subset N : A \neq \emptyset, \ \mathcal{L}^A \text{ is positive recurrent} \}.$

• \mathcal{U} : the set of $d \times d$ matrices defined by

$$\mathcal{U} = \Big\{ U = (\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_d): \ U \text{ is positive definite and} \\ \boldsymbol{a}(A)^\top \boldsymbol{u}_j < 0 \text{ for all } A \in \mathcal{N}_p \text{ and all } j \in A \Big\}$$

Theorem (Positive recurrence)

The *d*-dimensional RRW-WBP is positive recurrent if $\mathcal{U} \neq \emptyset$.

• This theorem can be proved by Foster's theorem.

A sufficient condition for transience

Notations

• $\bar{\mathcal{N}}_p^A$ $(A \subset N, A \neq \emptyset)$: the index set of positive-recurrent induced chains defined by

$$\bar{\mathcal{N}}_p^A = \bigcup_{l \in A} \Big\{ B \subset N : l \in B, \ \mathcal{L}^B \text{ is positive recurrent} \Big\}.$$

• \mathcal{W}_A : the set of *d*-dimensional vectors defined by

$$\begin{split} \mathcal{W}_A &= \Big\{ \boldsymbol{w} = (\boldsymbol{w}^A, \boldsymbol{w}^{N \setminus A}) \in \mathbb{R}^d : \\ \boldsymbol{w}^A &> \boldsymbol{0}^A, \ \boldsymbol{w}^{N \setminus A} < \boldsymbol{0}^{N \setminus A}, \ \boldsymbol{a}(B)^\top \boldsymbol{w} > 0 \text{ for all } B \in \bar{\mathcal{N}}_p^A \Big\}, \end{split}$$

where $\mathbf{0} = (\mathbf{0}^A, \mathbf{0}^{N \setminus A})$ is a vector of 0's.

A sufficient condition for transience

Notations

• $\bar{\mathcal{N}}_p^A$ $(A \subset N, A \neq \emptyset)$: the index set of positive-recurrent induced chains defined by

$$\bar{\mathcal{N}}_p^A = \bigcup_{l \in A} \Big\{ B \subset N : l \in B, \ \mathcal{L}^B \text{ is positive recurrent} \Big\}.$$

• \mathcal{W}_A : the set of *d*-dimensional vectors defined by

$$\begin{split} \mathcal{W}_A &= \Big\{ \boldsymbol{w} = (\boldsymbol{w}^A, \boldsymbol{w}^{N \setminus A}) \in \mathbb{R}^d : \\ \boldsymbol{w}^A &> \boldsymbol{0}^A, \ \boldsymbol{w}^{N \setminus A} < \boldsymbol{0}^{N \setminus A}, \ \boldsymbol{a}(B)^\top \boldsymbol{w} > 0 \text{ for all } B \in \bar{\mathcal{N}}_p^A \Big\}, \end{split}$$

where $\mathbf{0} = (\mathbf{0}^A, \mathbf{0}^{N \setminus A})$ is a vector of 0's.

Theorem (Transience)

The *d*-dimensional RRW-WBP is transient if $\mathcal{W}_A \neq \emptyset$ for some $A \subset N, A \neq \emptyset$.

Classification of 2D-RRWs-WBP

C1) When $a_1(N) < 0$ and $a_2(N) < 0$, the 2D-RRW-WBP $\{Y_n\}$ is

- (a) positive recurrent if $a_1(\{1\}) < 0$ and $a_2(\{2\}) < 0$,
- (b) transient if either $a_1(\{1\}) > 0$ or $a_2(\{2\}) > 0$.
- C2) When $a_1(N) > 0$ and $a_2(N) < 0$, the 2D-RRW-WBP $\{Y_n\}$ is
 - (a) positive recurrent if $a_1(\{1\}) < 0$,
 - (b) transient if $a_1(\{1\}) > 0$.

C3) When $a_1(N) < 0$ and $a_2(N) > 0$, the 2D-RRW-WBP $\{Y_n\}$ is

- (a) positive recurrent if $a_2(\{2\}) < 0$,
- (b) transient if $a_2(\{2\}) > 0$.

C4) When $a_1(N) > 0$ and $a_2(N) > 0$, the 2D-RRW-WBP $\{Y_n\}$ is transient.

- Interpretending of the second of the seco
- Induced Chain
- 8 Results
- An Queueing Example (3D Case)

Three queues with service interactions: A toy model

- Three M/M/1 queues with server vacations, input rejections and service interactions; λ: arrival rate; μ: service rate; We assume ρ = λ/μ < 1.</p>
- **②** When a queue becomes empty, the server of the queue enters an exponentially distributed single vacation with mean $1/\delta$.

Three queues with service interactions: A toy model

- Three M/M/1 queues with server vacations, input rejections and service interactions; λ: arrival rate; μ: service rate; We assume ρ = λ/μ < 1.</p>
- **②** When a queue becomes empty, the server of the queue enters an exponentially distributed single vacation with mean $1/\delta$.
- Customers arriving at the queue during the vacation are rejected.
- Solution After the vacation, the sever enters an idle state and waits for customers.

Three queues with service interactions: A toy model

- Three M/M/1 queues with server vacations, input rejections and service interactions; λ: arrival rate; μ: service rate; We assume ρ = λ/μ < 1.</p>
- **②** When a queue becomes empty, the server of the queue enters an exponentially distributed single vacation with mean $1/\delta$.
- Sustomers arriving at the queue during the vacation are rejected.
- After the vacation, the sever enters an idle state and waits for customers.
- When the server of Q_l enters a vacation, the server of Q_{(l+1) mod 3} begins to suspend its service; When the server of Q_l ends the vacation, the server of Q_{(l+1) mod 3} resumes its service.

Three queues with service interactions: 3D-RRW-WBP

- This model can be represented as a continuous-time version of 3D-RRW-WBP.
- By the uniformization, we obtain a discrete-time 3D-RRW-WBP
 {Y_n} = {((X_{1,n}, X_{2,n}, X_{3,n}), J_n)}; X_{l,n} is the number of customers in Q_l
 and J_n is the states of the servers. (*ν*: uniformization parameter)

Three queues with service interactions: 3D-RRW-WBP

- This model can be represented as a continuous-time version of 3D-RRW-WBP.
- By the uniformization, we obtain a discrete-time 3D-RRW-WBP
 {Y_n} = {((X_{1,n}, X_{2,n}, X_{3,n}), J_n)}; X_{l,n} is the number of customers in Q_l
 and J_n is the states of the servers. (*ν*: uniformization parameter)
- Induced chains:
 - \mathcal{L}^N : finite Markov chain, positive recurrent
 - $\mathcal{L}^{\{1,2\}}$, $\mathcal{L}^{\{2,3\}}$, $\mathcal{L}^{\{3,1\}}$: 1D-RRWs-WBP (QBD processes)
 - $\mathcal{L}^{\{1\}}$, $\mathcal{L}^{\{2\}}$, $\mathcal{L}^{\{3\}}$: 2D-RRWs-WBP
- **(** Mean increments with respect to induced chain \mathcal{L}^N :

$$a_1(N) = a_2(N) = a_3(N) = -(\mu - \lambda)/\nu < 0$$

 \Rightarrow Induced chains $\mathcal{L}^{\{1,2\}}$, $\mathcal{L}^{\{2,3\}}$ and $\mathcal{L}^{\{1,3\}}$ are positive recurrent.

• Consider the case of $\lambda \rho < \delta$, then

$$\begin{aligned} a_1(\{1,2\}) &= a_2(\{2,3\}) = a_3(\{1,3\}) = -\left(\frac{\delta/\lambda}{1-\rho+\delta/\lambda}\mu - \lambda\right)/\nu < 0, \\ a_2(\{1,2\}) &= a_3(\{2,3\}) = a_1(\{1,3\}) = -(\mu-\lambda)/\nu < 0, \\ a_3(\{1,2\}) &= a_1(\{2,3\}) = a_2(\{1,3\}) = 0. \end{aligned}$$

 \Rightarrow Induced chains $\mathcal{L}^{\{1\}}$, $\mathcal{L}^{\{2\}}$ and $\mathcal{L}^{\{3\}}$ are positive recurrent.

• Consider the case of $\lambda \rho < \delta$, then

$$a_1(\{1,2\}) = a_2(\{2,3\}) = a_3(\{1,3\}) = -\left(\frac{\delta/\lambda}{1-\rho+\delta/\lambda}\mu - \lambda\right)/\nu < 0,$$

$$a_2(\{1,2\}) = a_3(\{2,3\}) = a_1(\{1,3\}) = -(\mu-\lambda)/\nu < 0,$$

$$a_3(\{1,2\}) = a_1(\{2,3\}) = a_2(\{1,3\}) = 0.$$

 \Rightarrow Induced chains $\mathcal{L}^{\{1\}}$, $\mathcal{L}^{\{2\}}$ and $\mathcal{L}^{\{3\}}$ are positive recurrent.

② It is difficult to get the stationary distributions of $\mathcal{L}^{\{1\}}$, $\mathcal{L}^{\{2\}}$ and $\mathcal{L}^{\{3\}}$, but through some argument we obtain the following.

$$\begin{aligned} a_1(\{1\}) &= a_2(\{2\}) = a_3(\{3\}) < -\left(\frac{\delta/\lambda}{1-\rho+\delta/\lambda}\mu - \lambda\right)/\nu < 0, \\ a_2(\{1\}) &= a_3(\{1\}) = a_1(\{2\}) = a_3(\{2\}) = a_1(\{3\}) = a_2(\{3\}) = 0. \end{aligned}$$

 \Rightarrow The three-queue model is positive recurrent.

 $\ \, {\rm Onsider \ the \ case \ of \ } \lambda \left(\rho-1/2\right) < \delta < \lambda \rho, \ {\rm then} \ \ \,$

$$\begin{aligned} a_1(\{1,2\}) &= a_2(\{2,3\}) = a_3(\{1,3\}) = -\left(\frac{\delta/\lambda}{1-\rho+\delta/\lambda}\mu - \lambda\right)/\nu > 0, \\ a_2(\{1,2\}) &= a_3(\{2,3\}) = a_1(\{1,3\}) = -(\mu-\lambda)/\nu < 0, \\ a_3(\{1,2\}) &= a_1(\{2,3\}) = a_2(\{1,3\}) = 0. \end{aligned}$$

 \Rightarrow Induced chains $\mathcal{L}^{\{1\}}$, $\mathcal{L}^{\{2\}}$ and $\mathcal{L}^{\{3\}}$ are transient.

 $\ \, {\rm Onsider \ the \ case \ of \ } \lambda \left(\rho-1/2\right) < \delta < \lambda \rho, \ {\rm then} \ \ \,$

$$a_1(\{1,2\}) = a_2(\{2,3\}) = a_3(\{1,3\}) = -\left(\frac{\delta/\lambda}{1-\rho+\delta/\lambda}\mu - \lambda\right)/\nu > 0,$$

$$a_2(\{1,2\}) = a_3(\{2,3\}) = a_1(\{1,3\}) = -(\mu-\lambda)/\nu < 0,$$

$$a_3(\{1,2\}) = a_1(\{2,3\}) = a_2(\{1,3\}) = 0.$$

 \Rightarrow Induced chains $\mathcal{L}^{\{1\}}$, $\mathcal{L}^{\{2\}}$ and $\mathcal{L}^{\{3\}}$ are transient.

In this case, it suffices to check the following condition.

$$\frac{a_3(\{1,3\})}{a_1(\{1,3\})} \left| \left| \frac{a_2(\{3,2\})}{a_3(\{3,2\})} \right| \left| \frac{a_1(\{2,1\})}{a_2(\{2,1\})} \right| = \left(\frac{\lambda - \frac{\delta/\lambda}{1-\rho+\delta/\lambda} \, \mu}{\mu - \lambda} \right)^3 < 1.$$

 \Rightarrow The three-queue model is positive recurrent.

For Case 2, we used the following theorem.

Theorem (3D-RRW-WBP)

Assume the 3D-RRW-WBP satisfies $\boldsymbol{a}(N) < \boldsymbol{0}$ and

$$\begin{split} &a_1(\{1,3\})>0, \ a_3(\{1,3\})<0, \\ &a_3(\{3,2\})>0, \ a_2(\{3,2\})<0, \\ &a_2(\{2,1\})>0, \ a_1(\{2,1\})<0, \end{split}$$

then it is positive recurrent if

$$\left|\frac{a_3(\{1,3\})}{a_1(\{1,3\})}\right| \left|\frac{a_2(\{3,2\})}{a_3(\{3,2\})}\right| \left|\frac{a_1(\{2,1\})}{a_2(\{2,1\})}\right| < 1.$$

Summary

- We considered *d*-dimensional skip-free RRWs with a background process and obtained sufficient conditions on which they were positive recurrent or transient.
- Those conditions were represented as the problems to obtain positive definite matrices or vectors satisfying certain conditions.
- In two-dimensional case, we obtained explicit expressions for the conditions.

Summary

- We considered *d*-dimensional skip-free RRWs with a background process and obtained sufficient conditions on which they were positive recurrent or transient.
- Those conditions were represented as the problems to obtain positive definite matrices or vectors satisfying certain conditions.
- In two-dimensional case, we obtained explicit expressions for the conditions.

References

- Fayolle, G., On random walks arising in queueing systems: ergodicity and transience via quadratic forms as Lyapounov functions Part I, Queueing Systems 5 (1989), 167–184.
- Fayolle, G., Malyshev, V.A., and Menshikov, M.V., *Topics in the Constructive Theory of Countable Markov Chains*, Cambridge University Press, Cambridge (1995).
- \Rightarrow RRWs without a background process were studied in these references.

Summary

- We considered *d*-dimensional skip-free RRWs with a background process and obtained sufficient conditions on which they were positive recurrent or transient.
- Those conditions were represented as the problems to obtain positive definite matrices or vectors satisfying certain conditions.
- In two-dimensional case, we obtained explicit expressions for the conditions.

References

- Fayolle, G., On random walks arising in queueing systems: ergodicity and transience via quadratic forms as Lyapounov functions Part I, Queueing Systems 5 (1989), 167–184.
- Fayolle, G., Malyshev, V.A., and Menshikov, M.V., *Topics in the Constructive Theory of Countable Markov Chains*, Cambridge University Press, Cambridge (1995).
- \Rightarrow RRWs without a background process were studied in these references.

Thank you for your attention.